grumpyvette
Well-known member
Were Does Torque Come From??
no, not the KEBBLER ELVES OR THE STORK, look here!
heres a chart of a typical engine http://www.geocities.com/ljaya6390/analysis.htm
btw for those of you that can,t convert MPa-to-PSI in your head
http://epics.aps.anl.gov/asd/me/UnitConv.html
btw if your still not able to get it 5.402 MPa=783 psi
now thats in about an 8:1 cpr engine you can reach 1200psi in a 11:1-13:1 racing engine or a engine with the correctly tuned cam and intake/exhaust pulse timeing to efficiently fill the cylinders, thats where most of the better torque comes from! also notice that the pressure is only high for about 30 degs of the total 720 deg cycle and its only able to do usefull mechanical work for about 20 degs of the total 720 degs
now if thats a typical smogger 350 chevy.
a 4" bore has about 12.588 sq inchs of surface area x 783 psi /720 degs in the cycle x 20 degs of usefull work= 273 ft lbs of torque applied to the crankshaft every 90 degs, but kick the pressure to 1200psi in a 11:1 engine, and that same 350 makes 12.588sq inches x 1200psi /720degs in the cycle x 20 degs of usefull work= 419.7 ft lbs of torque, now alot depends on the dcr and volumetric efficiency but you should be getting the idea here by now!as long as the cylinders can fill completely you get a good fuel/air burn so you get a good cylinder pressure curve against the piston each time the cylinder fires,THE ENGINES TORQUE CURVE INCREASES WITH THE NUMBER OF EFFECTIVE POWER STROKES PER SECOND, at very low speeds theres not enough air velocity to mix the fuel correctly or produce a effective ram tuneing effect but as the rpms increase the cylinders fill very efficiently untill the rpms reach a point where the cylinders just don,t have the time necessary to flow
enough air through the valves to fill the cylinders , remember a 5000rpm the intake valve out of 720 degs in each cycle opens for about 250degs of effective flow even with a hot roller cam, now thats only about 35% of the time and theres 41.6 intake strokes per second , thats only 1/60th of a second for air to flow into the cylinder, I found this graph that shows the relationship between V.E.(VOLUMETRIC EFFICIENCY) and AN ENGINEs torque CURVE http://www.n2performance.com/lectures/lect1/n2perf5.gif
WHAT THAT GRAPH SHOWS RATHER EFFECTIVELY is that its your engines ability to fill the cylinders that increases your power and the more efficiently you do that the higher the rpm level you can acomplish that at the more power your engine makes, remember the formula for hp is (torque x rpm/ 5252=hp)so moveing the torque curve higher in the rpm range increases hp
keep the rubber side down and the fiberglass off the guard rails
no, not the KEBBLER ELVES OR THE STORK, look here!
heres a chart of a typical engine http://www.geocities.com/ljaya6390/analysis.htm
btw for those of you that can,t convert MPa-to-PSI in your head
http://epics.aps.anl.gov/asd/me/UnitConv.html
btw if your still not able to get it 5.402 MPa=783 psi
now thats in about an 8:1 cpr engine you can reach 1200psi in a 11:1-13:1 racing engine or a engine with the correctly tuned cam and intake/exhaust pulse timeing to efficiently fill the cylinders, thats where most of the better torque comes from! also notice that the pressure is only high for about 30 degs of the total 720 deg cycle and its only able to do usefull mechanical work for about 20 degs of the total 720 degs
now if thats a typical smogger 350 chevy.
a 4" bore has about 12.588 sq inchs of surface area x 783 psi /720 degs in the cycle x 20 degs of usefull work= 273 ft lbs of torque applied to the crankshaft every 90 degs, but kick the pressure to 1200psi in a 11:1 engine, and that same 350 makes 12.588sq inches x 1200psi /720degs in the cycle x 20 degs of usefull work= 419.7 ft lbs of torque, now alot depends on the dcr and volumetric efficiency but you should be getting the idea here by now!as long as the cylinders can fill completely you get a good fuel/air burn so you get a good cylinder pressure curve against the piston each time the cylinder fires,THE ENGINES TORQUE CURVE INCREASES WITH THE NUMBER OF EFFECTIVE POWER STROKES PER SECOND, at very low speeds theres not enough air velocity to mix the fuel correctly or produce a effective ram tuneing effect but as the rpms increase the cylinders fill very efficiently untill the rpms reach a point where the cylinders just don,t have the time necessary to flow
enough air through the valves to fill the cylinders , remember a 5000rpm the intake valve out of 720 degs in each cycle opens for about 250degs of effective flow even with a hot roller cam, now thats only about 35% of the time and theres 41.6 intake strokes per second , thats only 1/60th of a second for air to flow into the cylinder, I found this graph that shows the relationship between V.E.(VOLUMETRIC EFFICIENCY) and AN ENGINEs torque CURVE http://www.n2performance.com/lectures/lect1/n2perf5.gif
WHAT THAT GRAPH SHOWS RATHER EFFECTIVELY is that its your engines ability to fill the cylinders that increases your power and the more efficiently you do that the higher the rpm level you can acomplish that at the more power your engine makes, remember the formula for hp is (torque x rpm/ 5252=hp)so moveing the torque curve higher in the rpm range increases hp
keep the rubber side down and the fiberglass off the guard rails