[FONT="]Transliterating the numbers[/FONT]
[FONT="]Transliteration consists of removing all of the letters, and substituting them with their appropriate numerical counterparts.[/FONT]
[FONT="]These numerical alternatives can be found in the following chart. ''I'', ''O'' and ''Q'' are not allowed, and can not exist in a valid VIN[/FONT]
[FONT="]For the purpose of this chart, they have been filled in with ''N/A'' (not applicable).[/FONT]
[FONT="]Numerical digits use their own values.[/FONT]
[FONT="]Transliteration key: values for VIN Decoding[/FONT]
[FONT="]'A': 1 - 'B': 2 - 'C': 3 - 'D': 4 - 'E': 5 - 'F': 6 - 'G': 7 - 'H': 8 - 'I': {n/a} - 'J': 1 - 'K': 2 - 'L': 3 - 'M': 4 - 'N': 5 - 'O': {n/a} - 'P': 7 - 'Q': {n/a} - 'R': 9 - 'S': 2 - 'T': 3 - 'U': 4 - 'V': 5 - 'W': 6 - 'X': 7 - 'Y': 8 - 'Z': 9[/FONT]
[FONT="]'S' is 2, and not 1. There is no left-alignment linearity.[/FONT]
[FONT="]Weights used in calculation[/FONT]
[FONT="]The following is the weight factor for each position in the VIN.[/FONT]
[FONT="]The 9th position is that of the check digit. It has been substituted with a 0, which will cancel it out in the multiplication step.[/FONT]
[FONT="]Position (1-2-3-4-5-6-7-8-9-[10]-11-12-13-14-15-16-17)[/FONT]
[FONT="]Weight.. (8-7-6-5-4-3-2-10-[??]-9-8-7-6-5-4-3-2)[/FONT]
[FONT="]Worked example[/FONT]
[FONT="]Consider the hypothetical VIN 1M8GDM9A_KP042788, where the underscore will be the check digit.[/FONT]
[FONT="]VIN# 1 M 8 G D M 9 A ?? K P 0 4 2 7 8 8[/FONT]
[FONT="]=[/FONT]
[FONT="]Value 1 4 8 7 4 4 9 1 ?? 2 7 0 4 2 7 8 8[/FONT]
[FONT="]X[/FONT]
[FONT="]Weight 8 7 6 5 4 3 2 10 ?? 9 8 7 6 5 4 3 2[/FONT]
[FONT="]=[/FONT]
[FONT="]Products 8 28 48 35 16 12 18 10 ?? 18 56 0 24 10 28 24 16 = [/FONT][FONT="]sum of [/FONT]
[FONT="]351[/FONT]
[FONT="]The VINs value is calculated from the above table, this number will be used in the rest of the calculation. [/FONT]
[FONT="]Copy over the ''weights'' from the above table.[/FONT]
[FONT="]The ''products'' row is a result of the multiplication of the vertical columns: ''Value'' and ''Weight.''[/FONT]
[FONT="]The products (8,28,48,35..24,16, etc.) are all added together to yield a sum of ''351''[/FONT]
[FONT="]Find the remainder after dividing by 11,[/FONT]
[FONT="]351 ÷ 11 = 31 '''10'''/11[/FONT]
FRACTION CALCULATOR: http://www.calculatorsoup.com/calculators/math/fractionssimplify.php
[FONT="]The remainder is the check digit. If the remainder is 10 then the check digit is X.[/FONT]
[FONT="]In this example the remainder is 10, so the check digit is transliterated into ''X''.[/FONT]
[FONT="]With a check digit of 'X' the VIN: 1M8GDM9A_KP042788 is written as: 1M8GDM9A''X''KP042788. ''Straight-ones'' (seventeen consecutive '1's) will suffice the check-digit. This is because a value of one, multiplied against 89 (sum of weights), is still 89. And 89 % 11 is 1, the check digit. This is an easy way to test a VIN-check algorithm.[/FONT]
Thus, [FONT="]the VIN is:[/FONT]
[FONT="] 1 M 8 G D M 9 A X K P 0 4 2 7 8 8[/FONT]